Total RNA or individual populations of RNA, such as mRNA or small RNA are captured and converted to cDNA and subjected to NGS for analysis. Common rRNA and tRNA as well as abundant mRNA transcripts such as globin can be targeted for depletion in order to focus sequencing throughput on RNA of interest.
Applications:
At Biomiga, we understand that the quality of RNA going into next generation sequencing is directly related to the quality of sequence data coming out. That is why quality metrics are captured at vital points:
Biomiga 'targeted sequencing services will guide you all the way from project inception to high-quality results. Our expert personnel and state-of-the-art equipment allow for high-quality data and fast turnaround times. Sequencing is performed on an Illumina HiSeq 2500 utilizing V4 chemistry, which allows you to receive maximum value for your samples. Results are delivered via secure cloud drive or delivery via external hard drive is available.
Product Overview
The sequencing of RNA is available as both targeted and non-targeted approaches. For a non-targeted approach, the total RNA, or whole transcriptome, from a sample can be converted to cDNA, fragmented, end-repaired and adapter-ligated for NGS. This approach captures all RNA (mRNA, rRNA, tRNA and miRNA). However, if the questions being asked are more circumspect, then targeted or enrichment approaches are available to specifically pull out mRNA from the RNA pool by use of poly T probes, or alternatively deplete the abundant rRNA, tRNA or globin RNA with probes specific for those species can enrich the sample for the remaining RNA of interest and provide better sequence coverage.
For further focus, targeted strategies for genes of interest involve the use of the user-designed specific primers that can amplify a selected set of genes, such as those for a particular metabolic pathway. These primers are designed to also contain the sequences for direct NGS applications.
NGS library preparation strategies are available that contain adapters with a chemical modification that specifically targets the 3 end of miRNA allowing for their specific amplification and sequencing of this species from total RNA.
Since NGS is still a single-stranded DNA-based application, RNA has to be converted to cDNA prior to NGS. However, molecular methods allow for sequencing only the cDNA strand that represents the original RNA single stranded molecule by the incorporation of dUTP into the second strand during cDNA synthesis. This strand is then destroyed via Uracil-DNA-Glycosylase prior to final amplification and is not sequenced.
The sequence exploration of RNA with its targeting and enrichment strategies, dynamic range and quantitative information can be a highly valuable tool for discovering: